2020 Fiscal Year Final Research Report
Dynamically structural control and development of energy-storing type fuel cells based on ionic electronic transport
Project/Area Number |
17H00801
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Design and evaluation of sustainable and environmental conscious system
|
Research Institution | Tokyo Institute of Technology (2020) The University of Tokyo (2017-2019) |
Principal Investigator |
Otomo Junichiro 東京工業大学, 環境・社会理工学院, 教授 (90322065)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Keywords | 低炭素社会 / 燃料電池 / イオン伝導体 / 酸化還元反応 |
Outline of Final Research Achievements |
In this study, material design was conducted in combination with ionic-electronic transport and dynamic changes in reaction / transport / morphology in redox cycles between charge and discharge, and a new electrochemical system with functions of energy storage and power generation was proposed based on high-performance fuel cell technology. We investigated active materials which enable fast hydrogen generation reaction with ionic and electron transport properties, and developed carrier particles realizing high redox reaction rates and stability. In addition, an extremely efficient proton-conducting ceramic fuel cells (PCFC) was designed, and a prototype cell was developed. Finally, we designed an energy storage fuel cell system consisting of the developed carrier particles and PCFC, and proposed the high-performance and economical system.
|
Free Research Field |
反応工学、電気化学、エネルギーシステム設計
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果の学術的意義は、イオン、電子輸送物性を制御し、長寿命の酸化還元反応を実現するエネルギー貯蔵型燃料電池システムを設計・提案する点にある。この研究を通じて、金属酸化物の酸化還元反応速度の情報によるシステム全体への影響について明らかにすることができた。さらに、将来の大規模な再生可能エネルギーの導入のよる電力の平準化や、高密度エネルギー貯蔵と高効率なエネルギー変換を同時に満たす新しい技術が必要であり、本研究は、将来のシステム開発に貢献できる内容である。エネルギー密度についても、金属酸化物を用いることで、リチウムイオン電池等の従来技術を大きく上回るシステムを構築することができた。
|