2019 Fiscal Year Final Research Report
Construction of 3 dimensional oxide nanostructures for nanoscale electronic phase change device
Project/Area Number |
17H01054
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Applied materials
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Keywords | 強相関電子系 / 機能性酸化物 / 電子相転移 / 三次元ナノ構造 / ナノエレクトロニクス |
Outline of Final Research Achievements |
We report gigantic response for external field in strongly correlated oxides micro-nano-structures. Typical achievements are as follows. Demonstrations of ● a steep resistance jump with orders of magnitude changes caused by a metal-insulator transition in single-crystal VO2 nanowires with a 20 nm electrode gap, ● a three-dimensional Fe3O4 epitaxial nanowires at a 10 nm length scale using an original nanofabrication technique that comprises nanoimprint lithography and inclined thin-film deposition, ● VO2 nanowire channel FET through a hybrid gate showing an enhancement in the resistive modulation efficiency, ●VO2 thin films successfully grown onto hBN thin flakes, ● a gate-tunable abrupt switching device based on a VO2 microwire monolithically integrated with a two-dimensional WSe2 semiconductor. ●systematically study for a chemical FET composed of a SmNiO3 film channel and an ionic liquid gate insulator.
|
Free Research Field |
応用物性・ナノ機能材料科学
|
Academic Significance and Societal Importance of the Research Achievements |
遷移金属酸化物は、僅かな環境変化(温度、磁場、キャリア濃度)で、金属相、強磁性、高温超伝導などへ相転移する。この変化は劇的であり、新デバイス概念「Beyond CMOS」において、巨大スイッチング、超高速動作が可能な次世代デバイスの創製が期待されている。また本物質系の興味深い性質はSi半導体と大きく異なり10nm以下のナノ構造体であっても巨大スイッチングを示すと予測され、ムーアの限界以下のサイズでも魅力的なデバイス動作が期待されており、その実現の意義は大きい。本研究ではその実現に役立つ知見を得た。
|