• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Development of Quantum Computing System Based on Ferroelectric/Paraelectric Stacked Waveguides

Research Project

  • PDF
Project/Area Number 17H01063
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Optical engineering, Photon science
Research InstitutionOsaka University

Principal Investigator

KATAYAMA RYUJI  大阪大学, 工学研究科, 教授 (40343115)

Co-Investigator(Kenkyū-buntansha) 岩谷 素顕  名城大学, 理工学部, 教授 (40367735)
上向井 正裕  大阪大学, 工学研究科, 助教 (80362672)
宮嶋 孝夫  名城大学, 理工学部, 教授 (50734836)
Project Period (FY) 2017-04-01 – 2022-03-31
Keywords窒化物半導体 / エピタキシャル成長 / 非線形光学 / 量子光学 / 第二高調波発生 / 自発パラメトリック下方変換 / 強誘電体
Outline of Final Research Achievements

We have developed a technique for stacking nitride semiconductors (Al,Ga)N and ferroelectric Li(Nb,Ta)O3 by artificially inverting the crystal orientation, i.e., polarity or polarization, through surface-activated wafer bonding and epitaxial growth. We have also proposed a new wavelength conversion device based on this layered structure, and have successfully demonstrated ultra-broadband wavelength conversion from 229 to 460 nm using a channel waveguide-type wavelength conversion device that was actually fabricated. We have confirmed that these wavelength conversion devices have sufficient performance as a quantum light source, and have obtained the prospect of realizing an optical waveguide quantum computation platform, which was our initial goal, by combining an optical modulator and a pumping semiconductor laser that we also developed.

Free Research Field

結晶工学

Academic Significance and Societal Importance of the Research Achievements

成果の学術的意義は,まず新原理・新構造の波長変換素子を原理実証したことで,量子光学・非線形光学分野で使用可能な材料の選択肢を大きく広げデバイスを高性能化し、光量子計算機実現の可能性を示したことである.更に開発した表面活性化ウエハ接合技術は,異種材料を積層した透明な界面を要する新たな光学デバイス形成に有用な汎用技術となる.また社会的意義として,成果のうち特に短波長域の第二高調波発生素子は殺菌消毒や検査加工分野に広く応用可能であり,また微小共振器型素子は超広帯域な量子相関光子対発生が可能なため,超高空間分解能量子トモグラフィー,センシングなど,新たな光産業分野への応用展開が期待できる.

URL: 

Published: 2023-01-30   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi