2019 Fiscal Year Final Research Report
Research on Polymer Electrolyte Water Electrolysis Cells with High Efficiency by the Use of Low Loading Amount of Noble Metal Electroatalysts
Project/Area Number |
17H01229
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Inorganic industrial materials
|
Research Institution | University of Yamanashi |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
柿沼 克良 山梨大学, 大学院総合研究部, 特任教授 (60312089)
A.TRYK Donald 山梨大学, 大学院総合研究部, 特任教授 (30530092)
野原 愼士 山梨大学, 大学院総合研究部, 准教授 (40326278)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Keywords | 固体高分子形水電解 / 水素製造 / 電極触媒 |
Outline of Final Research Achievements |
We investigated low noble-metal electrocatalysts and catalyst layers for polymer electrolyte water electrolyzers to produce H2 efficiently. IrOx nanoparticles (ca. 2 nm) dispersed on M-SnO2 (M=Nb, Ta, Sb) support with a fused-aggregate structure exhibited higher mass activity (MA, by 27 to 36 times) for the O2 evolution than that of conventional (IrO2+Pt) black, due to a large active area and the interaction with the support. A single cell with IrOx/Sb-SnO2 anode and Pt/GCB cathode showed 92% voltage efficiency even with 1/10 noble-metal loading. A heat-treated Pt3Co/C cathode catalyst exhibited 4 timer higher MA for the H2 evolution than that of commercial Pt/C. We clarified the mechanism for the enhanced activity by using Pt3Co single crystal electrodes. It was found that Pt skin-PtFe/C catalyst suppressed a formation rate of H2O2, which induces a decomposition of polymer electrolytes. A single cell with Pt skin-PtFe/C cathode (1/10 Pt loading) operated stably for 1000 h.
|
Free Research Field |
電気化学
|
Academic Significance and Societal Importance of the Research Achievements |
貴金属量を従来の1/10に低減可能な酸素発生触媒と水素発生触媒の合成法を確立し、活性増大機構と設計指針を明らかにしたことは、材料科学、触媒化学、電気化学の今後の発展に大きく貢献する。貴金属量を1/10に低減した固体高分子形水電解で90%以上の高効率で水素製造が可能なことを実験により示したことは、学術的にも社会的にも意義は大きい。また、高分子電解質膜の化学劣化源となるH2O2生成を抑制する水素発生触媒の開発により、電解質膜を薄膜化しても耐久性が保てるため、性能と耐久性の両立が可能になる。この成果は、学術面と実用面で大きな進歩である。
|