• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Research on Polymer Electrolyte Water Electrolysis Cells with High Efficiency by the Use of Low Loading Amount of Noble Metal Electroatalysts

Research Project

  • PDF
Project/Area Number 17H01229
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Inorganic industrial materials
Research InstitutionUniversity of Yamanashi

Principal Investigator

UCHIDA Hiroyuki  山梨大学, 大学院総合研究部, 教授 (20127434)

Co-Investigator(Kenkyū-buntansha) 柿沼 克良  山梨大学, 大学院総合研究部, 特任教授 (60312089)
A.TRYK Donald  山梨大学, 大学院総合研究部, 特任教授 (30530092)
野原 愼士  山梨大学, 大学院総合研究部, 准教授 (40326278)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywords固体高分子形水電解 / 水素製造 / 電極触媒
Outline of Final Research Achievements

We investigated low noble-metal electrocatalysts and catalyst layers for polymer electrolyte water electrolyzers to produce H2 efficiently. IrOx nanoparticles (ca. 2 nm) dispersed on M-SnO2 (M=Nb, Ta, Sb) support with a fused-aggregate structure exhibited higher mass activity (MA, by 27 to 36 times) for the O2 evolution than that of conventional (IrO2+Pt) black, due to a large active area and the interaction with the support. A single cell with IrOx/Sb-SnO2 anode and Pt/GCB cathode showed 92% voltage efficiency even with 1/10 noble-metal loading.
A heat-treated Pt3Co/C cathode catalyst exhibited 4 timer higher MA for the H2 evolution than that of commercial Pt/C. We clarified the mechanism for the enhanced activity by using Pt3Co single crystal electrodes. It was found that Pt skin-PtFe/C catalyst suppressed a formation rate of H2O2, which induces a decomposition of polymer electrolytes. A single cell with Pt skin-PtFe/C cathode (1/10 Pt loading) operated stably for 1000 h.

Free Research Field

電気化学

Academic Significance and Societal Importance of the Research Achievements

貴金属量を従来の1/10に低減可能な酸素発生触媒と水素発生触媒の合成法を確立し、活性増大機構と設計指針を明らかにしたことは、材料科学、触媒化学、電気化学の今後の発展に大きく貢献する。貴金属量を1/10に低減した固体高分子形水電解で90%以上の高効率で水素製造が可能なことを実験により示したことは、学術的にも社会的にも意義は大きい。また、高分子電解質膜の化学劣化源となるH2O2生成を抑制する水素発生触媒の開発により、電解質膜を薄膜化しても耐久性が保てるため、性能と耐久性の両立が可能になる。この成果は、学術面と実用面で大きな進歩である。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi