• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

3D/4D mesoscopic materials science led by ultra-high resolution X-ray microscopy

Research Project

  • PDF
Project/Area Number 17H01328
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Structural/Functional materials
Research InstitutionKyushu University

Principal Investigator

Toda Hiroyuki  九州大学, 工学研究院, 教授 (70293751)

Co-Investigator(Kenkyū-buntansha) 小林 正和  豊橋技術科学大学, 工学(系)研究科(研究院), 准教授 (20378243)
Project Period (FY) 2017-04-01 – 2021-03-31
Keywordsシンクロトロン / トモグラフィー / X線顕微鏡 / 高エネルギー / 構造用金属材料 / 転位 / 原子空孔 / 3D/4D
Outline of Final Research Achievements

Imaging experiments have been performed at first for aluminum using the X-ray energy of 20 keV and subsequently for steels et al. using 30 keV or more, which was realized by combining a large-scale X-ray microscope and a phase contrast technique. The projection CT, by which the whole sample is visualized and the X-ray microscope were combined with an adjoining XRD setup with a collimated X-ray beam, thereby the evaluation of the-whole-sample and full-time observation of the weakest point is realized in spite of the high-resolution observation. In addition, the coarsening techniques, which analyzes a huge number of microstructural features in a 3D image, was studied. Dislocations and vacancies, and polycrystalline structures were measured in 3D in high density by employing our original 3D plastic strain mapping and diffraction-amalgamated grain boundary tracking technique, respectively. This enables us to conduct the real multi-scale imaging ranging between nanoscale and macroscale.

Free Research Field

構造・機能材料の力学強度

Academic Significance and Societal Importance of the Research Achievements

アルミニウム、チタン、鉄鋼等の構造材料内部にある複雑なミクロ構造とマクロ挙動とを結びつける研究手段が確立した。1本の試験片の1回の力学試験とその「その場観察」を実施することで、結晶学的情報、転位、原子空孔の3D分布やそれらの粗密をマクロな力学挙動と対応付けできる。このため、金属の各種力学挙動の理解と深い解析が解釈などを必要としない高い確度で実施できる。今後のマルチモーダル・マルチスケール3D/4Dアプローチの発展を促すと期待できる。一方、アルミニウムの水素脆化、チタンの亀裂伝播速度ばらつき、鉄鋼の歪み誘起相変態等の応用研究が平行して行われ、いずれも産業的に大きな成果を挙げつつある。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi