• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Disease-related genome analyses by long-read sequencers

Research Project

  • PDF
Project/Area Number 17H01539
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Human genetics
Research InstitutionYokohama City University

Principal Investigator

Matsumoto Naomichi  横浜市立大学, 医学研究科, 教授 (80325638)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywordsロングリードシーケンス / CNV / リピート異常 / 染色体構造異常 / Chromothripsis
Outline of Final Research Achievements

To overcome the low genetic solution rates in the short-read NGS analysis of human rare diseases, we started using long read sequencers such as PacBio Sequel I and II as well as Oxford Nanopore PromethION for whole genome sequencing in unsolved cases who received short read exome sequencing with negative results. We could obtain >20-bp CNVs by using PBSV. We also developed Tandem-Genotypes (Genome Biol 2019) for detecting abnormal repeat regions and dnarrange (medRxiv 2020) for finding genome-wide SVs.
Using these tools, we could find a homozygous 12.4-kb deletion involving CLN6 in a PME family (J Hum Genet 2019), a 4.6-kb SAMD12 intronic repeat insertion in a BAFME family (J Hum Genet 2019), a (GGC)n repeat expansion in NOTCH2NLC in familial and sporadic NIID (Nat Genet 2019), and biallelic pathogenic repeat expansion in a CANVAS family (J Hum Genet 2020). We could utilize the long read sequencing in solving unsolved patients by short read sequencing.

Free Research Field

ゲノム医学・人類遺伝学

Academic Significance and Societal Importance of the Research Achievements

ショートリード次世代シーケンス(NGS)での遺伝性疾患の解析では、原因解明率が約30%程度に留まるため、新しい解析手法が期待されている。ロングリードNGSはその有力な候補である。本研究では、ロングリードNGSの新たな解析手法を開発し、その具体的な使用法と具体的な成果を論文に発表している。例えばTandem-Genotypesでロングリード全ゲノムシーケンスデータからリピート伸長を見出した神経核内封入体は、ロングリードNGSの使用法を明示し世界的にも注目され、疾患解明におけるロングリードNGS研究を推進する大きな契機となると考える。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi