2022 Fiscal Year Final Research Report
Representation of visual and non-visual object attributes in the brain and artificial neural networks
Project/Area Number |
17H01756
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Cognitive science
|
Research Institution | National Institute for Physiological Sciences |
Principal Investigator |
Goda Naokazu 生理学研究所, システム脳科学研究領域, 助教 (30373195)
|
Co-Investigator(Kenkyū-buntansha) |
蒲池 みゆき 工学院大学, 情報学部(情報工学部), 教授 (70395101)
|
Project Period (FY) |
2017-04-01 – 2022-03-31
|
Keywords | 視覚 / 多感覚 / 質感 / 深層学習 |
Outline of Final Research Achievements |
Our brain effortlessly recognizes not only visual but also non-visual attributes of objects and environments just by looking at them. To delve into this intriguing neural processing, we analyzed the relationship between the psychological/neural representations of non-visual attributes of objects and the image features derived from deep convolutional neural networks (DNN). We discovered DNN features valuable for recognizing non-visual attributes and developed prototype image synthesis techniques that manipulate non-visual impressions using those features. Additionally, we created a virtual reality environment capable of manipulating visual and non-visual features, revealing new visual-somatosensory interactions within the environment. These techniques contribute to advancing our understanding of the brain's multisensory nature.
|
Free Research Field |
神経科学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、未だ解明されていない脳の情報処理を理解するために、現在成功を収めている深層畳込みニューラルネットワーク(DNN)を利用する試みである。脳神経科学研究だけでなくDNNの研究開発においても、複数の感覚(視覚や触覚など)情報を統合的に扱うアプローチはまだこれからのテーマであり、本研究で得られた知見や技術は、これら両分野の研究の進展に貢献することが期待される。
|