• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Annual Research Report

DeepMob: Learning Deep Models from Big and Heterogeneous Data for Next-generation Urban Emergency Management

Research Project

Project/Area Number 17H01784
Research InstitutionThe University of Tokyo

Principal Investigator

宋 軒  東京大学, 空間情報科学研究センター, 准教授 (20600737)

Project Period (FY) 2017-04-01 – 2020-03-31
KeywordsDisaster Informatics / Big Data and Data Mining / Artificial Intelligence / Urban Computing / Internet of Things
Outline of Annual Research Achievements

In the 2019 fiscal year, the research progress of this project is very good.(1)We developed a novel approach to extract the deep trend only from the current momentary observations.(2)We developed a novel decentralized attention-based human mobility predictor.(3)We developed a novel approach for analyzing the potential reduction in emissions associated with the adoption of a bicycle-sharing system.

Our research results were published in the eminent publications for computer science including ACM KDD 2019, ACM IMWUT 2019 and Applied Energy.

Research Progress Status

令和元年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和元年度が最終年度であるため、記入しない。

  • Research Products

    (6 results)

All 2019 Other

All Journal Article (5 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 5 results) Remarks (1 results)

  • [Journal Article] DeepUrbanEvent: A System for Predicting Citywide Crowd Dynamics at Big Events2019

    • Author(s)
      Jiang Renhe、Song Xuan、Huang Dou、Song Xiaoya、Xia Tianqi、Cai Zekun、Wang Zhaonan、Kim Kyoung-Sook、Shibasaki Ryosuke
    • Journal Title

      KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining

      Volume: - Pages: -

    • DOI

      https://doi.org/10.1145/3292500.3330654

    • Peer Reviewed
  • [Journal Article] Mobile phone GPS data in urban bicycle-sharing: Layout optimization and emissions reduction analysis2019

    • Author(s)
      Zhang Haoran、Song Xuan、Long Yin、Xia Tianqi、Fang Kai、Zheng Jianqin、Huang Dou、Shibasaki Ryosuke、Liang Yongtu
    • Journal Title

      Applied Energy

      Volume: 242 Pages: 138~147

    • DOI

      https://doi.org/10.1016/j.apenergy.2019.03.119

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Decentralized Attention-based Personalized Human Mobility Prediction2019

    • Author(s)
      Fan Zipei、Song Xuan、Jiang Renhe、Chen Quanjun、Shibasaki Ryosuke
    • Journal Title

      Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies

      Volume: 3 Pages: 1~26

    • DOI

      https://doi.org/10.1145/3369830

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Deep Multiple Instance Learning for Human Trajectory Identification2019

    • Author(s)
      Fan Zipei、Chen Quanjun、Jiang Renhe、Shibasaki Ryosuke、Song Xuan、Tsubouchi Kota
    • Journal Title

      SIGSPATIAL '19: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems

      Volume: - Pages: -

    • DOI

      https://doi.org/10.1145/3347146.3359342

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Measuring spatio-temporal accessibility to emergency medical services through big GPS data2019

    • Author(s)
      Xia Tianqi、Song Xuan、Zhang Haoran、Song Xiaoya、Kanasugi Hiroshi、Shibasaki Ryosuke
    • Journal Title

      Health & Place

      Volume: 56 Pages: 53~62

    • DOI

      https://doi.org/10.1016/j.healthplace.2019.01.012

    • Peer Reviewed
  • [Remarks] IPUC Laboratory

    • URL

      https://shiba.iis.u-tokyo.ac.jp/song/

URL: 

Published: 2021-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi