• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

DeepMob: Learning Deep Models from Big and Heterogeneous Data for Next-generation Urban Emergency Management

Research Project

  • PDF
Project/Area Number 17H01784
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionThe University of Tokyo

Principal Investigator

Song Xuan  東京大学, 空間情報科学研究センター, 准教授 (20600737)

Project Period (FY) 2017-04-01 – 2020-03-31
KeywordsDisaster Informatics / Big Data and Data Mining / Artificial Intelligence / Urban Computing / Internet of Things
Outline of Final Research Achievements

The research progress of this project is very good. Our research results were published in the eminent publications for computer science including AAAI 2018, ACM IMWUT 2018, ACM KDD 2019, ACM IMWUT 2019 and Applied Energy 2018 and 2019.

Free Research Field

情報学

Academic Significance and Societal Importance of the Research Achievements

本研究は、フロンティアビッグデータ応用分野において大きな意義を持ち、大規模災害や緊急事態発生後の経済損失、交通機関の混乱、廃業などを最小限に抑えることで、重大な社会的・経済的影響を与える可能性を秘めている。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi