2019 Fiscal Year Final Research Report
Electron-spin-resonance characterization on interface defects at wide-gap semiconductor (SiC and GaN) MOS interfaces
Project/Area Number |
17H02781
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Thin film/Surface and interfacial physical properties
|
Research Institution | University of Tsukuba |
Principal Investigator |
Umeda Takahide (梅田享英) 筑波大学, 数理物質系, 准教授 (10361354)
|
Co-Investigator(Kenkyū-buntansha) |
岡本 光央 国立研究開発法人産業技術総合研究所, エネルギー・環境領域, 主任研究員 (60450665)
原田 信介 国立研究開発法人産業技術総合研究所, エネルギー・環境領域, 研究チーム長 (20392649)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Keywords | ワイドギャップ半導体 / MOS界面 / 界面欠陥 / 炭化ケイ素 / 窒化ガリウム / 電子スピン共鳴 / ダングリングボンド |
Outline of Final Research Achievements |
We studied MOS (metal-oxide-semiconductor) interface defects of wide-band-gap semiconductors (4H-SiC and GaN), both of which are crucial in future low-energy-loss power electronics. The microscopic origins of the MOS interface defects have not been unraveled over two decades. Using electron spin resonance (ESR) spectroscopy, we have successfully identified the origins of major defects at 4H-SiC/SiO2 interfaces. The most major one is named "PbC center", which is an interface carbon dangling bond, similarly to the famous Pb center (interface silicon dangling bond) at Si/SiO2 interfaces. The PbC center causes the mobility degradation in SiC-MOSFET devices. For GaN, we studied GaN/SiO2 and GaN/Al2O3 interfaces. In both types of interfaces, we found that interface states are stabilized into doubly-occupied states (ESR-inactive states). We have developed a new convenient technique for estimating the total number of the doubly-occupied interface states by using ESR spectroscopy.
|
Free Research Field |
材料科学
|
Academic Significance and Societal Importance of the Research Achievements |
MOS界面欠陥の正体を突き止めることは、シリコンテクノロジーでは1970-80年代に行われ、これがその後のシリコン集積回路の発展の礎となった。同じようにワイドギャップ半導体でもMOS界面欠陥の正体を突き止めることは必要不可欠である。本研究は、炭化ケイ素(4H-SiC)において代表的なMOS界面欠陥の正体を突き止めることができた。窒化ガリウム(GaN)でも欠陥量を調べることのできる新しい手法を提案することができた。
|