• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Towards the theory of Algbebraic Symplectic Geometry

Research Project

  • PDF
Project/Area Number 17H02833
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

Namikawa Yoshinori  京都大学, 数理解析研究所, 教授 (80228080)

Project Period (FY) 2017-04-01 – 2021-03-31
Keywordsシンプレクティック代数多様体 / 錐的シンプレクティック多様体 / ポアソン変形 / 双有理幾何 / シンプレクティック特異点解消 / べき零軌道
Outline of Final Research Achievements

Complex algebraic varieties with holomorphic symplectic forms play important roles in algebraic geometry, geometric representation theory and mathematical physics. It is natural to treat those objects admitting singularities. In our research, we have studied "conical symplectic varieties". As concrete results, we first characterized finite coverings of nilpotent orbit closures of a complex semisimple Lie algebra among conical symplectic varieties. Next, we gave an algorithm for constructing a good partial resolution (so called a Q-factorial terminalization) of a conical symplectic variety associated with the universal covering of a nilpotent orbit of a classical Lie algebra. We also counted the number of different Q-factorial terminalizations.

Free Research Field

代数幾何

Academic Significance and Societal Importance of the Research Achievements

本研究の対象である, 錐的シンプレクティック多様体は, 代数幾何と幾何学的表現論の結びつける働きをするものであるが, 代数幾何からアプローチした研究は, ユニークなものである. ここで得られた成果は, 最近, 幾何学的表現論の研究者たちに多く使われるようになった. たとえば, シンプレクティック双対性とよばれる現象が多くの研究者の注目を浴びているが, 研究代表者のおこなった研究は, その中でも重要な働きをしている.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi