• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

New developments in arithmetic invariant theory

Research Project

  • PDF
Project/Area Number 17H02835
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKobe University

Principal Investigator

Taniguchi Takashi  神戸大学, 理学研究科, 教授 (60422391)

Project Period (FY) 2017-04-01 – 2022-03-31
Keywords数論的不変式論 / 概均質ベクトル空間 / 3次体 / 判別式
Outline of Final Research Achievements

We study the arithmetic invariant theory. We improved the error term estimate in the counting function for cubic fields. In particular, we significantly improved the uniformity estimate with respect to the local conditions. Also, we showed that there are large numbers of cubic and quartic fields whose discriminants have few prime factors. As a related topic, we obtained explicit formulas of the orbital exponential sums for around ten new cases of prehomogeneous vector spaces. We also obtained some partial results in the arithmetic of coregular spaces.

Free Research Field

整数論

Academic Significance and Societal Importance of the Research Achievements

数論的不変式論は最近非常に活発な研究が行われている分野である。本研究課題において、基盤的な成果をいくつか挙げることができた。この分野のもっとも典型的な問題である3次体の判別式を数える問題で成果を挙げることができ、その方法は、他の場合にも応用できると考えられる。軌道指数和の公式は、概均質ベクトル空間や代数幾何学を超えて、数学の他分野と関連を持つ可能性がある。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi