• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Theoretical study on charge speration and recombination dynamics to control the efficiency and stability of photosynthetic light harvesting

Research Project

  • PDF
Project/Area Number 17H02946
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Biological physics/Chemical physics/Soft matter physics
Research InstitutionInstitute for Molecular Science

Principal Investigator

Ishizaki Akihito  分子科学研究所, 理論・計算分子科学研究領域, 教授 (60636207)

Project Period (FY) 2017-04-01 – 2021-03-31
Keywords電荷移動ダイナミクス / 電荷再結合 / 光合成光捕集系 / 量子ダイナミクス / 分子計測 / 量子もつれ光
Outline of Final Research Achievements

We investigated the impacts of the protein environment and intramolecular vibrations on primary charge separation at the photosystem II reaction center (PSII-RC). We reported that individual vibrational modes play a minor role in promoting charge separation. Nevertheless, these small contributions accumulate to considerably influence the charge separation rate, resulting in subpicosecond charge separation almost independent of the driving force and temperature.
The recombination of the once-separated electron and hole is a major loss mechanism in photovoltaic systems. We investigated a potential ratchet mechanism arising from the combination of quantum delocalization and its destruction. We demonstrated that the non-Markovian effect originating from the slow polaron formation suppresses the electron-transfer reaction back to the interfacial charge-transfer state stabilized at the donor-accepter interface and that it plays a role in maintaining the long-range electron-hole separation.

Free Research Field

化学物理学、量子開放系、凝縮相化学動力学、光と物質の相互作用

Academic Significance and Societal Importance of the Research Achievements

量子ダイナミクス理論・分光データ解析・計算化学を統合させることにより得られた成果は、光合成光捕集系がその効率性と恒常性を維持するために自律的に制御していると考えられる「色素分子間の光誘起電荷分離反応とそれに続く電荷再結合反応の制御の分子機構」を解明する上で重要な洞察を与えている。
産業技術へ応用という視点からは、電荷再結合過程の回避・制御に関する理解の深化が挙げられる。人工光合成や太陽電池の高効率化を図る上でボトルネックになる問題の一つは、光照射によって分離した電子と正孔の電荷再結合過程をどう防ぐかである。この意味で、本成果は光電変換効率の高いシステムのデザインに向けた有意義な洞察を与える。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi