• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Studies on the mechanisms of functional properties of the metal-based piezocomposites having extremely high compressive residual stress

Research Project

  • PDF
Project/Area Number 17H03141
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Materials/Mechanics of materials
Research InstitutionChiba University

Principal Investigator

ASANUMA HIROSHI  千葉大学, 大学院工学研究院, 教授 (40167888)

Co-Investigator(Kenkyū-buntansha) 成田 史生  東北大学, 工学研究科, 教授 (10312604)
佐藤 宏司  国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 主任研究員 (70344166)
柳迫 徹郎  工学院大学, 工学部, 助教 (80784628)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywords知的材料 / スマート材料 / 圧電複合材料 / 金属基複合材料
Outline of Final Research Achievements

The metal-core piezoelectric fiber/aluminum composite is a unique piezoelectric composite that exhibits piezoelectricity even under the high compressive residual stress that occurs during embedding, however it is unknown about the stress state and the piezoelectric and mechanical characteristics under this stress. In this study, we conducted a survey to analyze the compressive stress field and evaluate the effect of improving the mechanical properties due to the stress, and obtained the following findings. 1) The compressive residual stress generated in the piezoelectric fiber by FEM analysis was about 1 GPa at the interface of the fiber, which was in agreement with the experimental results. From this result, it became possible to predict the stress state occurring in the piezoelectric fiber. 2) Compressive stress is triaxial stress, which is predominant in the longitudinal direction. This residual stress improves the fracture stress of piezoelectric ceramics up to about 1.6 times.

Free Research Field

知的材料・構造システム

Academic Significance and Societal Importance of the Research Achievements

圧電セラミックスは非常に脆弱であり,また圧縮応力を加えると特性が低下するという性質を持っている.金属コア圧電ファイバ/アルミニウム複合材料において極めて高い圧縮応力が3軸応力状態で圧電ファイバに作用するが,このような応力状態においても機能が発現することが確認されている.この応力状態における圧電セラミックス機能発現のメカニズム解明において,本研究で得られた特異な応力状態を予測できる手法は学術的に非常に価値が高い.また工学的にも,圧縮応力により圧電セラミックスの破壊応力が約1.6倍に向上したことは,圧電セラミックスの使用範囲が大幅に拡大するという,極めて価値の高いものであると言える.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi