2019 Fiscal Year Final Research Report
Development of a high-performance system of vibration analysis based on a new type of complex modal analysis for a self-excited system and a nonlinear system
Project/Area Number |
17H03191
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Dynamics/Control
|
Research Institution | Kyushu University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
松崎 健一郎 鹿児島大学, 理工学域工学系, 教授 (80264068)
石川 諭 九州大学, 工学研究院, 准教授 (60612124)
森 博輝 九州大学, 工学研究院, 准教授 (50451737)
盆子原 康博 宮崎大学, 工学部, 准教授 (10294886)
宗和 伸行 九州大学, 工学研究院, 助教 (40304753)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Keywords | 機械力学・制御 |
Outline of Final Research Achievements |
A new type of complex modal analysis was applied to a multi-degree-of-freedom self-excited system and a large-scale nonlinear system, and the effectiveness was confirmed. The main results obtained are shown below. For multi-degree-of-freedom self-excited systems, we formulated an optimization procedure of a dynamic absorber for self-excited vibration, and found that the operating principle is almost the same for all types of self-excited systems except for the asymmetric matrix system. In addition, we developed a highly accurate method of stability analysis using a dimension reduced model. For large-scale nonlinear systems, the dimension reduction method was applied to various machines and structures to improve the versatility and practicality. In addition, since the accuracy of the dimension reduced model highly depends on the selection of dominant modes used in the model, we developed an appropriate extraction method for dominant modes based on the norm of modal coordinates.
|
Free Research Field |
工学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で開発をした新型複素モード解析は,非比例減衰系や非対称行列系に対しても完全にモード分離された2階の実常微分方程式の形式でモード方程式を導出することが可能な実相似変換則に基づくものである.このため,エネルギー論的見地から振動特性やメカニズムの解明をモード毎に容易に検討することが可能となり学術的意義は大きい. また,本研究課題で開発した低次元化法により,従来困難とされてきた大規模振動系の高精度な振動解析が効率的に行えるようになった.このため,解析モデルの信頼性が向上し,機械システムでしばしば発生する振動問題に対して設計段階での予測や対策の立案が容易となり社会的意義も極めて高くなる.
|