• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

High-performance Si/SiGe RTD with fully compressively strained SiGe of high Ge composition ratio formed by sputtering method

Research Project

  • PDF
Project/Area Number 17H03245
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Electron device/Electronic equipment
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

Suda Yoshiyuki  東京農工大学, 工学(系)研究科(研究院), 名誉教授 (10226582)

Co-Investigator(Kenkyū-buntansha) 塚本 貴広  電気通信大学, 大学院情報理工学研究科, 助教 (50640942)
広瀬 信光  国立研究開発法人情報通信研究機構, 未来ICT研究所企画室, エキスパート (90212175)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywords電子デバイイス・機器 / 量子エレクトロニクス / 共鳴トンネルダイオード
Outline of Final Research Achievements

We have been developing a sputter epitaxy (SPE) method capable of forming a completely compressive-strained SiGe film with a higher Ge composition ratio on Si than in the chemical vapor deposition (CVD) method, and obtained a highly flat growth film. The structures of the Si/SiGe hole-tunneling resonant tunneling diodes (RTDs) were designed on the basis of the results obtained by simulation, and we have developed manufacturing processes using the completely compressive-strained SiGe film formation technology with this SPE method and the high-melting-point electrode and silicon-dioxide insulating film formation technologies. The double- and triple-barrier RTDs fabricated with a Ge composition ratio of 0.18 achieved the world's largest peak current density for SiGe RTDs. Even with a higher Ge composition ratio of 0.24, an excellent peak current density close to the theoretical value was also achieved.

Free Research Field

電子デバイス

Academic Significance and Societal Importance of the Research Achievements

高Ge組成比でSiに格子整合した圧縮歪SiGe/Siヘテロ構造を用いて,高性能な共鳴トンネルダイオード(RTD)を実現した.SiGe/Siヘテロ構造は,RTDを含めて,高移動度トランジスタ,ヘテロバイポーラトランジスタ(HBT)など様々な高速デバイスに用いられている.例えば,Ge組成比の増大に伴って性能の向上するHBTに適応するなど,様々な高速デバイスの革新的な新しい展開に繋がる.このような特徴は現行の半導体成膜の量産技術である化学気相堆積(CVD)法には無い特徴であり,今後の高速デバイスの開発を展開する新しい半導体成膜技術として期待され,産業・民生電子機器の新しい展開と産業への寄与は大きい.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi