• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Basic study on avoiding dangerous scenes under the assumption of automated driving based on brain information and personality

Research Project

  • PDF
Project/Area Number 17H03326
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Civil engineering project/Traffic engineering
Research InstitutionKochi University of Technology

Principal Investigator

Park Kaechang  高知工科大学, 地域連携機構, 客員教授 (60333514)

Co-Investigator(Kenkyū-buntansha) 村井 俊哉  京都大学, 医学研究科, 教授 (30335286)
中川 善典  高知工科大学, 経済・マネジメント学群, 准教授 (90401140)
繁桝 博昭  高知工科大学, 情報学群, 教授 (90447855)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywords高齢者 / 脳 / MRI / 危険運転 / パーソナリティ
Outline of Final Research Achievements

Japan, where the aging rate exceeds 28%, has been the fastest aging country in the world. The measures to prevent dangerous driving of elderly drivers become an urgent issue, so that the driving characteristics of drivers must be further taken into consideration. Targeting Brain Dock patients, three types of dangerous driving behaviors (illegal, irritable, aggressive) were classified and indicated brain features of regional gray matter volumes in each. Furthermore, the aging brain was defined as the grading of white matter lesions and the degree of brain atrophy, and the elderly drover’s operational performance of actual vehicles decreased according to the aging brain. Thus, MRI may enable to identify a dangerous driver in the elderly. In addition, a head-mounted display (HMD) presented 3D imaging of dangerous driving scenes. However, the measures for 3D imaging sickness is indispensable for the prevention from traffic accidents under automated driving system.

Free Research Field

交通工学

Academic Significance and Societal Importance of the Research Achievements

本研究の成果により、運転の個人差を克服することが可能になり、MRI定量データから危険運転挙動のメカニズム解明に繋がる発展性があり、交通工学と脳・精神医科学の融合が推進される。自動運転条件下の免許証発行に関する客観的根拠として活用することで、客観的精度と再現性が確保され、科学的な世界標準モデルとしての自動運転下の危険運転・交通事故防止対策を提案できる。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi