• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Multiomics analysis of tardigrade anhydrobiosis to elucidate the overview of its molecular machinery

Research Project

  • PDF
Project/Area Number 17H03620
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field System genome science
Research InstitutionKeio University

Principal Investigator

ARAKAWA Kazuharu  慶應義塾大学, 環境情報学部(藤沢), 准教授 (40453550)

Project Period (FY) 2017-04-01 – 2021-03-31
Keywordsクマムシ / 乾眠 / ゲノム / トランスクリプトーム / プロテオーム / マルチオミクス
Outline of Final Research Achievements

In order to elucidate the overall molecular mechanism of tardigrade anhydrobiosis, we first identified through multi-omics analysis that 1,422 genes are significantly induced in H. exemplaris which requires de novo gene expression for successful anhydrobiosis, and 928 of these to be conserved components, which we defined as the core gene set of anhydrobiosis. Time-series phosphoproteomics revealed that the induction of this drastic differential gene expression is regulated via AMPK signaling. Furthermore, we identified a novel gene, AMNP, involved in the repair from oxidative stress by the cross-tolerance assay of UV irradiation and anhyrobiosis. In addition, we found that liquid-liquid phase separation is involved in the mechanism of action of CAHS, and altogether elucidated the complex molecular mechanisms of tardigrade anhydrobiosis.

Free Research Field

システム生物学

Academic Significance and Societal Importance of the Research Achievements

完全な脱水は、細胞にとって究極のストレスである。浸透圧ストレス、細胞の水分を失ったことによるあらゆる分子の濃度上昇による酸化ストレスやpH・金属イオンによるストレス、乾燥によるタンパクの変成やDNAダメージなど、ストレスの集合体とも言える乾眠メカニズムを解明することは、細胞が自己を維持するための機構を網羅的に理解することに繋がり、真核細胞という生命システムの頑強性・脆弱性を理解する一助となると思われる。また、ヒト細胞の酸化ストレス耐性を向上できるAMNPの発見はバイオテクノロジー上の応用も期待できる。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi