• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Development of hemodiagnosis for early detection of ovarian cancer using glycopeptide peaks obtained from CSGSA (Comprehensive Serum Glycopeptide Spectra Analysis)

Research Project

  • PDF
Project/Area Number 17H04340
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Obstetrics and gynecology
Research InstitutionTokai University

Principal Investigator

MIKAMI Mikio  東海大学, 医学部, 教授 (30190606)

Co-Investigator(Kenkyū-buntansha) 信田 政子  東海大学, 医学部, 講師 (10338717)
池田 仁惠  東海大学, 医学部, 講師 (20365993)
柴田 健雄  東海大学, 健康学部, 講師 (30366033)
宮澤 昌樹  東海大学, 医学部, 客員講師 (30624572)
平澤 猛  東海大学, 医学部, 准教授 (70307289)
Project Period (FY) 2017-04-01 – 2021-03-31
Keywords卵巣癌 / 血清バイオマーカー / 糖ペプチド / 質量分析 / 人工知能 / 深層学習 / リキッドバイオプシー
Outline of Final Research Achievements

Ovarian cancer is a leading cause of deaths among gynecological cancers, and a method to detect early-stage epithelial ovarian cancer (EOC) is urgently needed. FS-C4BP, which was discovered by CSGSA, can be measured by Lectin and immunoblot to detect early EOC. CSGSA evaluates >10,000 glycopeptides and identifies reproducible peaks and patterns via supervised orthogonal partial least-squares discriminant modeling(OPLS-DA). Combined CSGSA(OPLS-DA), CA125, and HE4 had improved diagnostic performance. We also developed an AI-based CSGSA method. We converted serum glycopeptide expression patterns into two-dimensional (2D) barcodes to let convolutional neural network (CNN) learn and distinguish between EOC and non-EOC. When CNN was trained with 2D barcodes colored on the basis of serum levels of CA125 and HE4, a diagnostic AUC of 95% was achieved. This simple and low-cost method will increase the detection of EOC. Thus, CSGSA may be a useful screening tool for detecting early stage EOC.

Free Research Field

婦人科腫瘍学、糖鎖生物学

Academic Significance and Societal Importance of the Research Achievements

卵巣癌は早期発見が難しくかつ予後も極めて悪い癌であり、新たな発想の新規診断技術導入が重要である。腫瘍マーカーは単一分子と認識され研究されてきたが、現状では卵巣癌早期診断は不可能であろう。そこで古い概念を打ち破り、究極のCombination Assayと考えられる網羅的血清糖ペプチドピークと人工知能を用いた卵巣癌早期診断を開発し、現在汎用されている卵巣癌マーカーであるCA125とHE4よりも有意に初期卵巣癌を判別できる診断法を開発した。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi