• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Knowledge extraction from large-scale sequence data by combining pattern mining and sparse modeling

Research Project

  • PDF
Project/Area Number 17H04694
Research Category

Grant-in-Aid for Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Intelligent informatics
Research InstitutionNagoya Institute of Technology

Principal Investigator

Karasuyama Masayuki  名古屋工業大学, 工学(系)研究科(研究院), 准教授 (40628640)

Project Period (FY) 2017-04-01 – 2021-03-31
Keywords機械学習 / 疎性モデリング / パターンマイニング / 構造データ
Outline of Final Research Achievements

Because of development of a variety of sensor devices and increase of the capacity of storage devices, a significance of data-driven approaches to extracting useful knowledge from accumulated data have been widely recognized. In this study, we consider identifying important substructures in sequence or more complicated graph data, which has a connected structure inside a data instance. Since combinatorially many possible substructures exist, we propose efficient pruning algorithms that removes unnecessary patterns. Our framework is based on an optimization theory, and thus, the optimality of the resulting identified substructures can be guaranteed.

Free Research Field

機械学習

Academic Significance and Societal Importance of the Research Achievements

機械学習技術の注目が高まるつれ,その解釈性は大きな社会的関心事となっている.本課題で扱うような系列やグラフは,時系列データや化合物などの科学データで単純な数値テーブルでは表現できないデータの表現方法として広く定着しているものである.そのため,多様化するデータ駆動解析において,本課題で扱ったような問題設定は今後ますます顕在化すると考えられる.一方で,組み合わせ的に爆発する部分構造に対し,最適性を保証しつつ学習する枠組みはほとんど研究がなく,本研究の独自性・意義を示すものである.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi