• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Electrolytic oxidation of biomass under RF electromagnetic field

Research Project

  • PDF
Project/Area Number 17H05049
Research Category

Grant-in-Aid for Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Environmental agriculture(including landscape science)
Research InstitutionTokyo Institute of Technology

Principal Investigator

Tsubaki Shuntaro  東京工業大学, 物質理工学院, 助教 (90595878)

Project Period (FY) 2017-04-01 – 2021-03-31
Keywordsバイオマス / 高周波 / マイクロ波 / ポリオキソメタレート / 電解酸化
Outline of Final Research Achievements

This research demonstrated the synergistic effects of radiofrequency-sensitive catalysts and the application of radiofrequency for activation of catalytic reactions via polyoxometalates. In situ observation systems (such as in situ Raman, in situ XAFS, in situ dielectric constant measurement systems) were developed for elucidation of structures of catalyst and biomass during the reactions under electromagnetic waves. By using the above devices, the electrochemical water oxidation reaction via polyoxometallate was accelerated by irradiating a 200 MHz radiofrequency. Moreover, these devices were also effective in various chemical processes not only biomass conversion reactions but also freeze-drying, and CO2 recovery.

Free Research Field

バイオマス、触媒化学、マイクロ波化学

Academic Significance and Societal Importance of the Research Achievements

本研究は、電磁波を用いて効果的に触媒反応を駆動し、バイオマス変換反応を促進する方法論を確立した。従来のマイクロ波装置は発振周波数が2.45GHzに限られてきたが、物質の誘電特性は周波数に依存して大きく変化する。そこで、電解質の触媒が高周波帯域に電磁波吸収を示すことに着目して、新たに高周波化学反応装置群を開発した。本装置を用いて、高周波によって特異的に反応が促進されることを実証した。さらに、本装置はバイオマス変換反応のみならず、様々な化学プロセスにも応用可能であった。これらの電磁波駆動化学反応は、太陽光や風力などをもとに駆動する、再生可能エネルギー時代に新化学プロセスとして期待される。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi