• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Development of sub-cycle time-resolved STM and its applications

Research Project

  • PDF
Project/Area Number 17H06088
Research Category

Grant-in-Aid for Specially Promoted Research

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Mathematics and Physics
Research InstitutionUniversity of Tsukuba

Principal Investigator

SHIGEKAWA Hidemi  筑波大学, 数理物質系, 教授 (20134489)

Co-Investigator(Kenkyū-buntansha) 長谷川 幸雄  東京大学, 物性研究所, 教授 (80252493)
Project Period (FY) 2017-04-25 – 2022-03-31
Keywords極限計測 / 走査トンネル顕微鏡法 / 超短パルスレーザー / 時間分解走査トンネル顕微鏡法 / 電場駆動型サブサイクル時間分解走査トンネル顕微鏡 / CEP制御 / サブサイクル時間分解測定
Outline of Final Research Achievements

Our research group has developed an ultimate measurement method that has both the time resolution of a subcycle (within a cycle of an electric field) and a spatial resolution comparable to that of scanning tunneling microscopy (STM) by combining cutting-edge technology in quantum optics with STM. We succeeded in visualizing the ultrahigh-speed movement of electrons optically excited in C60 thin films and the movement of excitons in WS2/WSe2 structures at picosecond and nanometer resolutions for the first time in the world. In addition, we have realized time-resolved STM with the world’s highest time resolution (< 30fs) using a mid-infrared electric field to observe the real-space photoinduced nonequilibrium dynamics in MoTe2. Our method also explored core technologies that can generate a new scientific field by combining the systems we developed, for example, a time-resolved measurement method in which the condition of specimens is controlled coherently.

Free Research Field

走査プローブ顕微鏡や量子光学を利用した極限計測技術の開発とナノサイエンスへの応用

Academic Significance and Societal Importance of the Research Achievements

半導体素子の構造は数nmで制限される領域に達し、特性を制御するために導入されたドーパントの空間分布や界面の揺らぎが、得られる機能に直接影響を及ぼす段階に至っている。電荷に加えスピンや励起子を利用した機能材料・素子の開発も盛んであるが、局所的な構造の秩序揺らぎは、これら要素のダイナミクスにも大きな影響を与え、光誘起相転移など含めて機能を制御する上で重要な課題となる。しかし、解析は主にマクロ(平均的)な情報を基礎とされてきた。開発したシステムは、時間・空間両領域で極限的な分解能を併せ持つだけでなく、状態を制御しながらダイナミクスを可視化するなど、新たな科学領域を拓き産業を創出する基盤技術となる。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi