• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Expansion of Applicability of Phase Approximation for Non-Markovian Models

Research Project

  • PDF
Project/Area Number 17K00033
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical informatics
Research InstitutionHiroshima University

Principal Investigator

Okamura Hiroyuki  広島大学, 工学研究科, 教授 (10311812)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywordsシステムモデリング / 位相型近似 / 性能評価 / マルコフモデル / シミュレーション
Outline of Final Research Achievements

This project partially solved the problems of accuracy guarantee and state explosion in the phase type approximation in MRGP, and expanded the applicability of the phase type approximation in practical use. In particular, as the accuracy guarantee for the phase approximation, we evaluated the upper and lower bounds by using the stochastic order and the total variation. Furthermore, we have developed perfect sampling for Markov model with phase type approximation, and relaxed the problem of state explosion. In perfect sampling, we defined a mathematical programming problem to obtain the upper and lower bounds of system states, and it is solved with an SMT solver. Our algorithm made it possible to apply the perfect sampling to a wide class of models.

Free Research Field

情報学

Academic Significance and Societal Importance of the Research Achievements

ここで得られた成果は位相型近似で従来から指摘されてきた精度保証と状態爆発の問題をある程度可決し,その適用可能性を大幅に向上させた.確率モデルによるシステム評価は,これからIoT/CPSシステムで利用されるモデルベース開発などでのシステム検証に対して有効である.そのため,ここで得られた成果はシステム全体の高信頼化に対して大きく寄与するものと考えられる.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi