• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

A study on person re-identification of low-resolution images using degradation model

Research Project

  • PDF
Project/Area Number 17K00238
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Perceptual information processing
Research InstitutionTottori University

Principal Investigator

NISHIYAMA Masashi  鳥取大学, 工学研究科, 准教授 (20756449)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywords低解像度 / ダウンサンプリング / 人物照合 / カメラ映像
Outline of Final Research Achievements

A problem arises when a camera with a wide field of view has an extremely low resolution of a person, which dramatically reduces the performance of person re-identification. To solve the problem, I have developed a method to identify low-resolution person images using the appropriate resampling technique. I collected a low-resolution image dataset for varying the camera lens's focal length and the distance from the person to the camera. Experimental results show that a downsampling technique for generating low-resolution images is more effective than an upsampling technique for generating high-resolution images. I demonstrated that the low-frequency components obtained by a downsampling technique contained many discriminative features.

Free Research Field

画像認識

Academic Significance and Societal Importance of the Research Achievements

本研究の学術的な特色として,低解像度でも人物画像を正しく照合する方法の実現に向けて,画像劣化モデルに基づくリサンプリングを設計したことが挙げられる.低解像度の人物画像を単に高解像度へ復元すれば照合性能が高まると一般的には考えられているが,本研究の成果が示すように必ずしもこれは成り立たない.解像度に応じて逆に解像度を落とす復元方法の開発が重要であることを明らかにした.本研究で開発された方法により,低解像度の人物画像を照合できるようになれば,空港や商業施設など人々が集まる場所に設置されたカメラで見守ることができる範囲が広がるため,本研究の成果は安心・安全な社会の実現に貢献できる意義がある.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi