• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Development of Integrated Approximation and Compression Techniques for Next Generation Streaming Data Mining

Research Project

  • PDF
Project/Area Number 17K00301
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Intelligent informatics
Research InstitutionShizuoka University (2018-2020)
University of Yamanashi (2017)

Principal Investigator

Yamamoto Yoshitaka  静岡大学, 情報学部, 准教授 (30550793)

Project Period (FY) 2017-04-01 – 2021-03-31
Keywordsストリームデータ / オンラインアルゴリズム / 系列予測 / 頻出パターンマイニング
Outline of Final Research Achievements

In this research, we developed a fast and memory-efficient algorithm for frequent sequential pattern mining from streaming data (FSP-SD). Streaming data analysis is a central issue in many domains. FSP-SD is one of the most fundamental tasks in streaming data analysis dealing with discrete structures. It exhibits two important issues; (1) the real time property to process a huge volume of transactions continuously arriving at high speed and simultaneously output the frequent sequences (FSs); and (2) memory efficiency to enumerate FSs while managing an exponential number of candidates with limited memory resource. We have addressed these two issues based on a novel technique, which is achieved by integrating approximation and compression. Our proposed algorithm and implementation, called PARASOL, is published in Journal of Intelligent Information Systems, and now available freely for academic. We also applied PARASOL to the event prediction problem.

Free Research Field

知能情報学

Academic Significance and Societal Importance of the Research Achievements

クラウドサービスやIoTの発展に伴い,多くのストリームデータが生み出されている.ストリームデータのインパクトはリアルタイム分析にあるが,他方,大量のデータを高速・省メモリで処理する必要がある.本研究で扱う問題は,組み合わせ爆発やリアルタイム性などオンライン処理を実現するストリームデータマイニングに共通する技術的制約や難しさを含んでおり重要な基礎問題に位置付けられる.本研究を通して,適用困難だった大規模データへのデータマイニング法の可用性が高められ、安価な計算資源でビッグデータの相関分析や時系列解析を行えるようになっている.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi