• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Acceleration Technique of Learning Algorithm for Large-Scale, Strongly Nonlinear Data using Quadratic Approximate Gradient Models with Inertia Term

Research Project

  • PDF
Project/Area Number 17K00350
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Soft computing
Research InstitutionShonan Institute of Technology

Principal Investigator

Ninomiya Hiroshi  湘南工科大学, 工学部, 教授 (60308335)

Project Period (FY) 2017-04-01 – 2022-03-31
Keywordsニューラルネットワーク / 学習アルゴリズム / 準ニュートン法 / モーメント法 / ネステロフの加速勾配法
Outline of Final Research Achievements

The objective of this study is to improve the quasi-Newton method, which enables neural networks learning of increasingly large and complex data. We have developed a new algorithm that enables high accuracy and high speed. Furthermore, we succeeded in establishing the robustness of the proposed method by proving convergence property and analytically deriving hyperparameters. As a result, we have solved the problem of neural networks learning with complexity and scale that were previously unfeasible.

Free Research Field

人工知能

Academic Significance and Societal Importance of the Research Achievements

IoTの発展により,あらゆる場面でデータが蓄積され,これまで全く無関係であると考えられてきたデータを同時に扱うことで新たな知見を得ることが可能な時代となった.従って,今後はデータ量が多くなるだけではなく,より複雑な関係性を内包する大規模データの解析を,AIを用いて行うことが必要となってきた.本研究では,これを可能とするAI技術の核となる,ニューラルネットワークの学習に焦点を当て,従来よりも強力な学習アルゴリズムの開発に成功したことに学術的および社会的意義がある.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi