2019 Fiscal Year Final Research Report
Development of algoriths for the prediction of tissue-specific enhancers in the era of personalized genomics
Project/Area Number |
17K00397
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Life / Health / Medical informatics
|
Research Institution | The University of Tokyo |
Principal Investigator |
NAKAI KENTA 東京大学, 医科学研究所, 教授 (60217643)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Keywords | 細胞種特異的エンハンサー / Hi-Cデータ解析 / A/Bコンパートメント / グラフ畳み込みネットワーク / B細胞リンパ腫 |
Outline of Final Research Achievements |
Enhancers play a major role in the regulation of tissue-specific gene expression in eukaryotes. In this study, we tried to understand how enhancers work to their target genes mainly from the analyses of genome sequence data. We reanalyzed different sources of Hi-C data and figured out where in the genome shows differential TAD and/or A/B compartment structures among cell types. Then, we checked if the expression pattern of genes in these regions is correlated with the changes of their cell types. Indeed, we found some interesting correlations in their expression and function between B-cells and their lymphomas, for example.
|
Free Research Field |
ゲノム情報科学
|
Academic Significance and Societal Importance of the Research Achievements |
塩基配列決定技術の進歩により、個人間のゲノムの差(多型)やがん組織中の個々の細胞内ゲノム変異分布等の情報が次々に産出されており、いわゆるパーソナルゲノム医療への応用が期待されている。しかし、転写制御領域に関する我々の理解が不十分なため、 これらを含む非コード領域中の多型や変異の及ぼす影響を見積もることは難しい。本研究は染色体構造の細胞による変化などをもとに転写制御の仕組みを研究し、いくつかの新しい報告を行った。
|