• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Development of prediction method for mass death of fish by using eRNA and stress hormone

Research Project

  • PDF
Project/Area Number 17K00581
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Environmental impact assessment
Research InstitutionShimane University

Principal Investigator

Takahara Teruhiko  島根大学, 学術研究院農生命科学系, 准教授 (10536048)

Co-Investigator(Kenkyū-buntansha) 土居 秀幸  兵庫県立大学, シミュレーション学研究科, 准教授 (80608505)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywords環境DNA / 環境RNA / ストレスホルモン / 水生動物
Outline of Final Research Achievements

In this study, by using environmental DNA (eDNA), environmental RNA (eRNA), and stress hormones (cortisol), we tried to develop the method for assessing the risk of biological mass death and the predictive monitoring in aquatic ecosystems. Lake Shinji as our main field is a shallow oligohaline lake on the coast of the Sea of Japan. The samples for eDNA, eRNA, and stress hormone were accumulated at 14 sites/month throughout 3 study years. In addition, the optimal storage method for water samples for eDNA was clarified. And, a method for collecting, concentrating, and purifying eRNA was established. We also established the method for assessing the amount of cortisol (stress hormone) released from the target organism under stress experimental conditions. Based on these results, we believe that we have established the basic technology necessary to perform the risk assessment of aquatic mass mortality.

Free Research Field

動物生態学

Academic Significance and Societal Importance of the Research Achievements

本研究では、これまでほとんど明らかにされていなかった湖沼などにおける魚介類の大量死イベントに関して、予測とモニタリングを可能にする技術開発に取り組んでおり、学術的意義は大きいと考えている。具体的には、水生動物を用いた詳細な飼育実験と継続的な野外調査を通して、大量死の予兆を把握するために環境RNAやストレスホルモンの測定を可能にした点があげられる。本研究で開発された技術は、様々な水生動物にも即座に応用可能であり、今後の発展として、水域生態系における大量死予測に関する汎用的な手法を提案し、重要水産資源等の持続可能な管理の実現が期待できると考えている。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi