• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Construction of The Health Process Model System based on State Transition Probability to utilize NDB Big Data

Research Project

  • PDF
Project/Area Number 17K01820
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Applied health science
Research InstitutionNagoya City University

Principal Investigator

Miyauchi Yoshiaki  名古屋市立大学, 大学院看護学研究科, 准教授 (70410511)

Co-Investigator(Kenkyū-buntansha) 西村 治彦  兵庫県立大学, 応用情報科学研究科, 教授 (40218201)
Project Period (FY) 2017-04-01 – 2021-03-31
Keywordsビッグデータ / 状態遷移確率
Outline of Final Research Achievements

We reexamined the model structure and modified the program so that the health process model based on the state transition probability that we constructed earlier corresponds to the data structure of NDB. For the expression of the health status of the examinees, we used the binarization of the health examination data based on the health examination judgment standard value and the expression of the health condition of 16 states by logical sum. Next, in order to improve the accuracy and reliability of the health process model as the data is accumulated year by year, we have developed a mechanism to automatically calculate and update by applying AI technology. In addition, we worked on Android application development so that the examinees can utilize the health process model on a daily basis. By integrating them, the basic configuration of the "health process model system", which is the purpose, was realized.

Free Research Field

医療情報学

Academic Significance and Societal Importance of the Research Achievements

特定健診をはじめとするデータヘルス計画における保健事業の成果として個人単位での健診等のデータが大規模に年々蓄積されていくNDBビックデータに親和性の高い保健指導サポートシステムを構築したことにより、NDBビックデータに基づいた高精度な健康セルフマネジメントを受診者自らが行うことができるようになると考えている。そして、これはデータヘルス計画推進への貢献のみならず、2035年の保健医療へ向けたイノベーションと情報基盤の整備と活用への貢献へつながるものと考えている。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi