• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Construction of a system of evaluating assets based on utility indifference pricing

Research Project

  • PDF
Project/Area Number 17K03667
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Economic statistics
Research InstitutionNagoya University of Commerce & Business

Principal Investigator

HODOSHIMA Jiro  名古屋商科大学, 経済学部, 教授 (30181514)

Co-Investigator(Kenkyū-buntansha) 三澤 哲也  名古屋市立大学, 大学院経済学研究科, 教授 (10190620)
宮原 孝夫  名古屋市立大学, 大学院経済学研究科, 名誉教授 (20106256)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywordsperformance measure / 期待効用無差別価格理論 / IRRA / Aumann-Serrano index / 実証研究 / risk loving / 計量分析
Outline of Final Research Achievements

We aimed to evaluate utility indifference pricing and the index named IRRA, proposed by Miyahara (2010, 2014), by assuming the underlying distribution of
assets to follow a flexible class of discrete normal mixture distributions. We showed the properties of utility indifference pricing and the IRRA and applied our method to financial products such as stocks and Bitcoin under the normal mixture distribution assumption and a more general assumption. Our evaluation of financial products is the evaluation appropriate for risk-averse investors.
We succeeded in extending the underlying investor in utility indifference pricing and the IRRA to a risk-loving investor and proved the properties of utility indifference pricing and the IRRA when an investor is risk-loving.

Free Research Field

計量経済学、ファイナンス、統計学

Academic Significance and Societal Importance of the Research Achievements

Miyahara (2010, 2014)が提唱した効用関数が指数関数の場合の期待効用無差別価格とそこから導出される指標IRRAの特性を、問題となる資産などの確率変数にnormal mixture distribution(混合正規分布)を仮定して、より詳しく明らかにすることが出来た。また、期待効用無差別価格とIRRAを、いろいろな金融商品で推定し、これらの金融商品のリスク回避的な評価を示すことが出来た。
また、期待効用無差別価格とIRRAは、これまではリスク回避的な見方だけをしてきたが、リスク愛好的な場合にも拡張出来ることを示し、これまでの研究を統合する視点を提供できた。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi