2021 Fiscal Year Final Research Report
Construction and practice of jam resolution theory based on an integrable traffic flow model considering nonlocal interactions
Project/Area Number |
17K05147
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Computational science
|
Research Institution | Kansai University (2021) Musashino University (2017-2020) |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2022-03-31
|
Keywords | 渋滞学 / 数理モデル / 交通流 / セルオートマトン / 差分方程式 / 安定性 / 双安定 |
Outline of Final Research Achievements |
A new mathematical model of traffic flow described by nonlinear difference equation is proposed to extend the framework of the "jam-absorption driving", a driving technique aimed at eliminating spontaneous traffic jam on highways, and the proposed model is analyzed. As a result, it is shown that the proposed model exhibits instability of homogeneous flow, which is important for a traffic flow model, and that it has a bistable solution structure. Furthermore, to clarify the common mathematical structure of the proposed model and existing mathematical models of traffic flow, the corresponding partial differential equations and ultra-discrete equations derived by the continuous and ultra-discrete limits of the proposed model are also studied in detail.
|
Free Research Field |
数理工学
|
Academic Significance and Societal Importance of the Research Achievements |
【学術的意義】平均密度や速度に注目するマクロモデルはこれまで偏微分方程式で記述されるモデルが主であり,数値シミュレーションのためには,差分化のテクニックやその誤差に注意が必要であったが,偏差分方程式で記述される交通流モデルを提案したことにより,この提案モデルで直接シミュレーションをすることが可能となった. 【社会的意義】提案モデルを用いることで,「渋滞吸収運転術」のフレームワークが拡張でき,自然渋滞形成後の渋滞解消のみならず,形成過程における渋滞予防にも適用範囲が広がる.
|