• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Arithmetic geometry of the moduli spaces of algebraic curves and abelian varieties, and its applications

Research Project

  • PDF
Project/Area Number 17K05179
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionSaga University

Principal Investigator

Ichikawa Takashi  佐賀大学, 理工学部, 教授 (20201923)

Co-Investigator(Kenkyū-buntansha) 庄田 敏宏  関西大学, システム理工学部, 教授 (10432957)
中村 健太郎  佐賀大学, 理工学部, 准教授 (90595993)
Project Period (FY) 2017-04-01 – 2022-03-31
Keywords代数曲線 / アーベル多様体 / モジュライ空間 / リーマン・ロッホ同型写像 / マンフォード曲線 / アーベル微分 / 周期積分 / KP階層
Outline of Final Research Achievements

Using an explicit formula of abelian differentials on generalized Tate curves, we give infinite product expressions of the Riemann-Roch isomorphism and the Mumford isomorphism defined for families of algebraic curves, and study the degeneration of quasi-periodic solutions of the KP hierarchy with application to its solutions obtained as mixtures of quasi-periodic and soliton solutions. Furthermore, we construct the universal Mumford curve, and show explicit formulas of its (universal) abelian differentials, period integrals and compactified Jacobians. As a nonabelian extension of this result, we give asypmtotic explicit formulas of unipotent peirods using multiple polylogarithm functions and zeta values.

Free Research Field

代数曲線とそのモジュライ空間に関する数論幾何的研究と応用

Academic Significance and Societal Importance of the Research Achievements

代数曲線、アーベル多様体のモジュライ空間の数論幾何的研究に新しい知見を与えると共に、弦理論の測度関数、ソリトン方程式、ファインマン積分などの理論物理や数理物理への応用も視野に入れることができた。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi