• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Comprehensive study of algebraic varieties and singularities and their applications to engineering centered on tropical geometry

Research Project

  • PDF
Project/Area Number 17K05206
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

Kobayashi Masanori  東京都立大学, 理学研究科, 准教授 (60234845)

Project Period (FY) 2017-04-01 – 2023-03-31
Keywordsトロピカル幾何
Outline of Final Research Achievements

Basic facts such as the formulation by pointed monoids for toric tropical manifolds are summarized, and F1-algebras and unipotent commutative semirings in algebraic geometry are discussed with an awareness of the relation to ordered additive groups, and further research is conducted for future applications to singularity theory. The connection with the results of Shustin et al. on the tropicalization of hypersurface families of fixed Newtonian polyhedra is investigated. For applications to scheduling problems, we continued our research on extracting information on the original network structure from tropical polynomials. Assisted in organizing a meeting in this field by young researchers.

Free Research Field

代数幾何学

Academic Significance and Societal Importance of the Research Achievements

これまで代数幾何においては当然とされてきた可換環の枠組みについて反省し,概型理論が成立する最小の代数系で理論構築を行うことで,証明の簡略化や本質の抽出ができる知識伝授ができるようになった.また国内でのトロピカル幾何の研究集会の当面の常設化ができた.工程計画問題等,応用数学・工学において,ニュートン多面体を介した幾何的手法が導入できる新たな方向性を提示した.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi