• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Applications of Alexander polynomial

Research Project

  • PDF
Project/Area Number 17K05246
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKanazawa University

Principal Investigator

Kadokami Teruhisa  金沢大学, 機械工学系, 教授 (80382026)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywords結び目 / アレクサンダー多項式 / Reidemeister torsion / デーン手術 / もろ手性 / 結び目と数論
Outline of Final Research Achievements

The Alexander polynomial is the most classical polynomial invariant for knots, which is always important in Knot Theory and Low dimensional Topology.From the fact that the Alexander polynomial is deeply related with the Reidemeister torsion, which is an invariant for 3-dimensional manifolds, via surgery formula, I have studied the value of the Reidemeister torsion of lens spaces and Seifert manifolds by using the facts from cyclotomic field theory.

Free Research Field

低次元トポロジー

Academic Significance and Societal Importance of the Research Achievements

アレクサンダー多項式は学術的に様々な方面に応用できる。私が研究で行った主な応用は、手術理論、絡み目の対称性問題、結び目理論と数論の関連性の理論である。特に数論との関連性からわかるように、今後も他分野との関わりを広げられる可能性を秘めていると確信する。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi