• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Study of multi-variable hypergeometric differential equations for statistics

Research Project

  • PDF
Project/Area Number 17K05279
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKobe University

Principal Investigator

Takayama Nobuki  神戸大学, 理学研究科, 教授 (30188099)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywords多変数超幾何関数 / ホロノミック勾配法 / 二元分割表 / Wishart行列
Outline of Final Research Achievements

We gave a new algorithm to translate an A-hypergeometric system to a Pfaffian equation. A Pfaffian equation for the matrix 2F1 is derived. We show that the expectation of a random manifold defined by Wishart matrix and its maximal eigenvalue is expressed by an integral. We studied holonomic systems for the integral under several conditions on the Wishart matrix and performed a numerical analysis of them. An error free method to solve systems of difference equations is given. It utilizes the Chinese remainder theorem. It is demonstrated that the method is useful to evaluate the normalizing constant and its derivatives for two way contingency tables.

Free Research Field

解析学

Academic Significance and Societal Importance of the Research Achievements

Holonomic 系の Pfaffian 方程式を導出するという古典的な問題に関して, 新しい計算アルゴリズムを与えるとともに, 行列超幾何関数や対称性が高いEuler標数の期待値関数については理論的な結果を得た. これらは統計分布の正規化定数の数値評価問題に適用可能である.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi