• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Diversity of the dynamics of polynomials and transcendental entire functions

Research Project

  • PDF
Project/Area Number 17K05296
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKyoto University

Principal Investigator

KISAKA Masashi  京都大学, 人間・環境学研究科, 教授 (70244671)

Project Period (FY) 2017-04-01 – 2024-03-31
Keywords超越整関数 / Mandelbrot集合 / Julia集合 / Fatou集合 / 擬等角写像 / 中立サイクル / 多項式類似写像 / 構造有限超越整関数
Outline of Final Research Achievements

We investigated the dynamics of polynomials and transcendental entire functions by mainly using complex analytic methods. As a remarkable result, we proved that the following phenomena which can be observed in the Mandelbrot set by computer graphics actually exist by formulating them mathematically and proving the statements: Take a small Mandelbrot set in the Mandelbrot set, and choose a parameter from it which corresponds to a quadratic polynomial with either a parabolic periodic point or whose critical point 0 is preperiodic. By zooming in its neighborhood, we can see a quasiconformal image of a Cantor Julia set which is a perturbation of a parabolic or Misiurewicz Julia set. Furthermore, by zooming in its middle part, we can see a certain nested structure ("decoration") and finally another "smaller Mandelbrot set" appears.

Free Research Field

力学系

Academic Significance and Societal Importance of the Research Achievements

概要で述べた成果は「相空間上の対象物であるJulia集合がパラメータ空間であるMandelbrot集合内のあちこちに現れる」という驚くべき現象を数学的に解明するもので,そのインパクトと意義は大きい.また「Mandelbrot集合の境界のHausdorff次元は2である」という宍倉による有名な結果に対して「Mandelbrot集合の境界にはCantor型のJulia集合の擬等角写像による像で,Hausdorff次元が2にいくらでも近いものがあるから」という,非常にわかりやすい説明ができるようになったのは意義深い.これは社会に向かって力学系理論の面白さをアピールするための非常に強力な武器となる.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi