2023 Fiscal Year Final Research Report
Diversity of the dynamics of polynomials and transcendental entire functions
Project/Area Number |
17K05296
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Kyoto University |
Principal Investigator |
KISAKA Masashi 京都大学, 人間・環境学研究科, 教授 (70244671)
|
Project Period (FY) |
2017-04-01 – 2024-03-31
|
Keywords | 超越整関数 / Mandelbrot集合 / Julia集合 / Fatou集合 / 擬等角写像 / 中立サイクル / 多項式類似写像 / 構造有限超越整関数 |
Outline of Final Research Achievements |
We investigated the dynamics of polynomials and transcendental entire functions by mainly using complex analytic methods. As a remarkable result, we proved that the following phenomena which can be observed in the Mandelbrot set by computer graphics actually exist by formulating them mathematically and proving the statements: Take a small Mandelbrot set in the Mandelbrot set, and choose a parameter from it which corresponds to a quadratic polynomial with either a parabolic periodic point or whose critical point 0 is preperiodic. By zooming in its neighborhood, we can see a quasiconformal image of a Cantor Julia set which is a perturbation of a parabolic or Misiurewicz Julia set. Furthermore, by zooming in its middle part, we can see a certain nested structure ("decoration") and finally another "smaller Mandelbrot set" appears.
|
Free Research Field |
力学系
|
Academic Significance and Societal Importance of the Research Achievements |
概要で述べた成果は「相空間上の対象物であるJulia集合がパラメータ空間であるMandelbrot集合内のあちこちに現れる」という驚くべき現象を数学的に解明するもので,そのインパクトと意義は大きい.また「Mandelbrot集合の境界のHausdorff次元は2である」という宍倉による有名な結果に対して「Mandelbrot集合の境界にはCantor型のJulia集合の擬等角写像による像で,Hausdorff次元が2にいくらでも近いものがあるから」という,非常にわかりやすい説明ができるようになったのは意義深い.これは社会に向かって力学系理論の面白さをアピールするための非常に強力な武器となる.
|