• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Research-status Report

複素空間における中間的擬凸性の研究

Research Project

Project/Area Number 17K05301
Research InstitutionHiroshima University

Principal Investigator

阿部 誠  広島大学, 理学研究科, 教授 (90159442)

Project Period (FY) 2017-04-01 – 2021-03-31
Keywords中間的擬凸性 / シュタイン多様体 / 正則近似定理 / 有理型近似定理 / 単葉型開リーマン面
Outline of Annual Research Achievements

研究目的は,n個の複素変数の組全体のなす空間の上の領域,シュタイン多様体の上の領域,または一般のK完備複素空間において,中間的な擬凸性・完備性・正則近似性,または層係数コホモロジー群の性質等に注目し,順を追って,これらの間の関係を調べることにより,複素多様体・複素空間におけるシュタイン性に関連する解析的または幾何的性質について新しい道筋を加えることである.そのような研究の試みとして,この年度においては,シュタイン多様体の上の領域の中間的な擬凸性の考察にも応用が可能な形で,n個の複素変数の組全体のなす空間の上の領域について,中間的な擬凸性の2次関数を用いて定式化される中間的次元の1パラメータ球体族による新しい特徴付けを完成して,その詳細を学術雑誌に投稿中である(学内共同研究).また,中間的擬凸性を定義する際に必要になるn個の複素変数の劣多重調和関数の特徴付けに関するひとつの結果を得て,その概要を複素解析に関する国内研究集会において発表した.一方,シュタイン多様体内の連結開集合に対する強い円板的性質と正則近似・有理型近似との関連についても引き続き研究を行い,複素1次元の場合に限定すれば,開リーマン面の連結開集合についての正則近似と強い円板的性質の関係による単葉型開リーマン面の特徴付けを得るとともに,強い円板的な性質の位相的な特徴付けも得て,その詳細を学術雑誌に掲載することができた(国内共同研究).

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

研究目的に関連する複数の論文を執筆し,投稿することができたので,概ね順調に進展している.

Strategy for Future Research Activity

n個の複素変数の組全体のなす空間の上の領域についての中間的な擬凸性の新しい特徴付けに関連する課題については,その応用を含めた形で,さらに次の段階へ進みたい.また,開リーマン面の連結開集合についての正則近似と強い円板的性質の関係を用いた単葉型開リーマンの特徴付けに関連する課題についても同様である.

  • Research Products

    (3 results)

All 2019 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (2 results) (of which Invited: 2 results)

  • [Journal Article] Planar open Riemann surfaces and holomorphic approximation2019

    • Author(s)
      Makoto Abe and Gou Nakamura
    • Journal Title

      愛知工業大学研究報告

      Volume: 54 Pages: 14-19

    • Peer Reviewed / Open Access
  • [Presentation] A characterization of subpluriharmonicity for a function of several complex variables2019

    • Author(s)
      阿部 誠
    • Organizer
      平成30年度複素解析ワークショップ,広島工業大学,広島市,2019年3月23~24日
    • Invited
  • [Presentation] 単葉型開 Riemann 面と正則近似性質2018

    • Author(s)
      阿部 誠
    • Organizer
      ポテンシャル論セミナー,名城大学,名古屋市,2018年5月18日
    • Invited

URL: 

Published: 2019-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi