2019 Fiscal Year Research-status Report
Project/Area Number |
17K05301
|
Research Institution | Hiroshima University |
Principal Investigator |
阿部 誠 広島大学, 理学研究科, 教授 (90159442)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Keywords | 中間的擬凸性 / シュタイン多様体 / 正則近似定理 / 有理型近似定理 / 単葉型開リーマン面 |
Outline of Annual Research Achievements |
研究目的は,n個の複素変数の組全体のなす空間の上の領域,シュタイン多様体の上の領域,または一般のK完備複素空間において,中間的な擬凸性・完備性・正則近似性,または層係数コホモロジー群の性質等に注目し,順を追って,これらの間の関係を調べることにより,複素多様体・複素空間におけるシュタイン性に関連する解析的または幾何的性質について新しい道筋を加えることである.この年度においては,シュタイン多様体の上の領域の中間的な擬凸性の考察にも応用が可能な形で,n個の複素変数の組全体のなす空間の上の領域について,中間的な擬凸性の2次関数を用いて定式化される中間的次元の1パラメータ球体族による新しい特徴付けを完成して,その詳細は学術雑誌に掲載確定である(学内共同研究).また,中間的擬凸性を定義する際に必要になるn個の複素変数の劣多重調和関数の特徴付けに関する研究を継続して,その詳細を学術雑誌に掲載した(学内共同研究).一方,シュタイン多様体内の連結開集合に対する強い円板的性質と正則近似・有理型近似との関連についても研究を継続し,複素1次元の場合に限定すれば,開リーマン面の連結開集合についての正則近似と強い円板的性質の関係による単葉型開リーマン面の特徴付けを完成して,その詳細を学術雑誌に掲載するとともに(国内共同研究),多複素変数の場合に一般化した形で,函数論分科会シンポジウムにおいて講演した.さらに,大域的正則関数によって定義される解析的集合に関連する研究も行った(学内共同研究).
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
研究目的に関連する複数の論文が学術雑誌に掲載,掲載確定,または投稿中であり,概ね順調に進展しているといえる.
|
Strategy for Future Research Activity |
n個の複素変数の組全体のなす空間等の上の領域または一般のK完備複素空間における中間的な擬凸性の新しい特徴付けに関連する課題について,さらに次の段階へ進みたい.
|
Research Products
(5 results)