• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Deepening and application of Sobolev inequality studies using reproducing kernel theory

Research Project

  • PDF
Project/Area Number 17K05374
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionNihon University

Principal Investigator

TAKEMURA Kazuo  日本大学, 理工学部, 准教授 (60367216)

Co-Investigator(Kenkyū-buntansha) 亀高 惟倫  大阪大学, その他部局等, 名誉教授 (00047218)
山岸 弘幸  東京都立産業技術高等専門学校, ものづくり工学科, 准教授 (10448053)
Project Period (FY) 2017-04-01 – 2022-03-31
Keywordsグリーン関数 / ソボレフ不等式 / 最良定数
Outline of Final Research Achievements

A representative result in Sobolev inequalities is the successful extension of the results for one-dimensional L2 Sobolev-type inequalities to Lp Sobolev-type inequalities. In the discrete Sobolev inequality, the best constants were obtained for 1812 isomers of C60 fullerene. The best estimate of the discrete Sobolev inequality was found to be related to the physical properties of materials with crystal structures. In particular, the best constant is considered to be an indicator of the stiffness of the mechanical model under consideration; the smaller the best-constant, the stiffer the material under consideration. The results obtained provide evidence that buckyball is the stiffest of the 1812 isomers.

Free Research Field

微分方程式

Academic Significance and Societal Importance of the Research Achievements

本研究成果の中でも特に,離散ソボレフ不等式をC60フラーレンに対する異性体1812個に対して適用して得られた結果は数理的な問題を現実の物質に適用することで,物質の特徴付けを行うことができたという点において,学術的に意義がある。こうして得られた知見は,工学的にも応用が可能であることから,社会的意義も同時に兼ね備えている。本研究成果は結晶構造を持つ物質を対象として,それらの剛性を調べることが可能であることから,今後,工学分野へ波及効果をもたらすものと考えられる。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi