• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Method of Gravitational Wave Search Based on Adaptive Time-Frequency Analysis and Machine Learning

Research Project

  • PDF
Project/Area Number 17K05437
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Particle/Nuclear/Cosmic ray/Astro physics
Research InstitutionNagaoka University of Technology

Principal Investigator

Takahashi Hirotaka  長岡技術科学大学, 工学研究科, 准教授 (40419693)

Co-Investigator(Kenkyū-buntansha) 秋月 拓磨  豊橋技術科学大学, 工学(系)研究科(研究院), 助教 (40632922)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywords重力波物理学・天文学 / 宇宙物理学 / 重力波データ解析 / 時間-周波数解析 / 機械学習
Outline of Final Research Achievements

The algorithm based on Hilbert-Huang transform (HHT) analysis and machine learning has been developed as a method for time series analysis of nonlinear and nonstationary data, and it enables us to perform a high resolution time frequency analysis of signals with strong frequency modulation by evaluating the instantaneous variation of amplitude and frequency of data.
By using the developed method, we analyzed gravitational waves from black hole quasi normal mode and core collapse supernova, respectively. Moreover, the noise selection and noise reduction method based on machine learning was proposed.
We suggested that the analysis method based on the HHT and machine learning was also effective for gravitational wave analysis, and indicated the necessity of further research.

Free Research Field

重力波物理学・天文学

Academic Significance and Societal Importance of the Research Achievements

本研究で開発を進めた重力波解析手法は、適応時間周波数解析と機械学習を基盤としている。近年、機械学習やAIなどの情報技術は急速に発展し、重力波データ分析にこれらの最新の方法を適用する価値がある。
一方で、開発した適応型の信号処理と機械学習は、音声処理、画像処理、生体信号処理(心電図、筋電、EEGを含む)やスポーツなどの幅広い分野において、潜在的なアプリケーションがあると考えられる。そのため、本研究によって得られた知識は重力波データ解析の枠を超えて広範囲に影響を与える可能性がある。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi