• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Search for superconducting hydrogen compounds by integration approach of computational and data sciences

Research Project

  • PDF
Project/Area Number 17K05541
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Condensed matter physics II
Research InstitutionNational Institute for Materials Science (2018-2019)
Osaka University (2017)

Principal Investigator

ISHIKAWA Takahiro  国立研究開発法人物質・材料研究機構, 磁性・スピントロニクス材料研究拠点, NIMS特別研究員 (40423082)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywords超伝導 / 高圧 / 水素化合物 / 進化的アルゴリズム / 第一原理計算
Outline of Final Research Achievements

Compressed hydrogen compounds are attracting attention as candidates for room-temperature superconductivity. The number of combinations, however, is significantly large, and data scientific approaches are useful for the search. In the present study, I developed an original methodology for materials search, which is the integration approach of computational high-pressure science and data science, and applied it to the search for novel superconducting hydrogen compounds. I collected the data on hydrogen compounds from literature, developed the superconductivity predictor from the data using an evolutionary technique, and predicted potential candidates. I obtained the results that ternary hydrogen compounds consisting of the group 1-3 and 13-16 elements have a potential to show high-temperature superconductivity. I verified their superconductivities using first-principles calculations, and obtained 122 kelvin in KScH12 and 98 kelvin in GaAsH6.

Free Research Field

物性理論

Academic Significance and Societal Importance of the Research Achievements

結晶構造探索プログラムの独自開発・改良を行いながら高圧物質科学に応用しているグループは世界的に見ても数が少なく、進化的手法を基礎とする計算高圧科学とデータ科学の融合はまだ誰も試みていない独自の研究方法となるため、本研究を達成できれば他のグループでは実施できない独創的で挑戦的な研究を行うことが可能となる。高圧極限環境下では物質の物理的・化学的性質が常圧のものから大きく変化し、物質の隠された姿が明らかになる。本研究によって得られる物質の結晶構造、電子状態、超伝導性などに関するデータや知見は、超伝導物質だけでなく、その他の機能性物質の探索・設計にも応用できる。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi