• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Optimal quantum state estimation strategy in the presence of unknown environment

Research Project

  • PDF
Project/Area Number 17K05571
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical physics/Fundamental condensed matter physics
Research InstitutionThe University of Electro-Communications

Principal Investigator

Suzuki Jun  電気通信大学, 大学院情報理工学研究科, 准教授 (70565332)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywords量子推定 / 量子ノイズ / 撹乱パラメータ / 量子Fisher情報行列 / 実験計画法 / 量子情報幾何
Outline of Final Research Achievements

In this project, we developed the general framework to analyze the parameter estimation problem when a quantum system of interest interacts with unknown environment. As the main result, we established the quantum estimation theory for quantum statistical models containing nuisance parameters. We extended the theory of optimal design of experiments to the more general setting such as quantum state and channel estimation problem. The proposed method were applied to find an optimal estimation strategy for quantum estimation problems in the presence of nuisance parameters. We characterized quantum statistical models based on the properties of tangent spaces. Our method aimed at unifying different choices of operator monotone metrics on the quantum state manifold in quantum information geometry. We applied our proposal to several examples in physical systems to illustrate effectiveness of our approach.

Free Research Field

量子情報

Academic Significance and Societal Importance of the Research Achievements

本研究の意義は、量子精密測定技術の発展に不可欠な基本問題に対し、これまでの物理的なアプローチでは扱うことができなかった、特定のノイズモデルを仮定せずかつ不確定な要素を含むノイズの影響下での量子状態推定問題に対する最適な量子推定方法の統計学的な理論枠組みの構築と現実の物理モデルでの評価である。本研究の結果は、数理統計学・物理学・量子情報理論の融合性により得られるものであり、基礎科学研究として重要であるとともに、より現実的な問題設定での理論展開へとつながるので、今後の量子精密測定技術の発展につながることが期待される。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi