• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Optimization method for sound-absorbing poroelastic media by using homogenization method and topology optimization method

Research Project

  • PDF
Project/Area Number 17K06238
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Dynamics/Control
Research InstitutionKogakuin University

Principal Investigator

Yamamoto Takashi  工学院大学, 工学部, 准教授 (30613640)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywords吸音材 / 微視構造 / トポロジー最適化 / 均質化法
Outline of Final Research Achievements

Acoustic properties of sound-absorbing poroelastic media such as sound absorption coefficient are affected by microscopic structures. However, a design method for microscopic structures of sound-absorbing poroelastic media has not been established and the trial and error approach by prototypes is required. In this study, two new design methods for sound-absorbing poroelastic media are proposed. One is a parametric optimization method to design microscopic parameters of sound-absorbing poroelastic media, such as fiber diameter and pore size. In this method, Biot's parameters are identified by the homogenization method and are optimized by genetic algorithm. The other is topology optimization method to design microstructure directly. In this method, the homogenization method based on the asymptotic expansion and the topology optimization method based on density approach is utilized. Microscopic structure of sound-absorbing poroelastic structure is optimized to maximize dissipated energy.

Free Research Field

機械工学

Academic Significance and Societal Importance of the Research Achievements

均質化法を用いマクロスケールで定義された目的関数を最小にするミクロスケールのトポロジーを最適化する設計法は弾性体問題では構築されているが,それを多孔質吸音材というマルチフィジクスの問題に拡張した.随伴変数法と密度法を用いるトポロジー最適化を応用しており,考え方は他のフィジクスにも応用が可能である.また,これまで,試作した吸音材に対して吸音率などの性能を予測・評価するという設計法が用いられており,目標性能を満たすためにはトライアンドエラーが必要であったが,所望の吸音特性となる吸音材料を最適設計するという従来とは逆方向の新しい設計法を構築することができ,設計の効率化,材料の高機能化につながる.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi