2022 Fiscal Year Final Research Report
Fundamental research on finite length analysis in information theory and optimization theory for practical, reliable, and highly efficient communications
Project/Area Number |
17K06446
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Communication/Network engineering
|
Research Institution | Waseda University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2023-03-31
|
Keywords | 情報理論 / 符号理論 / 有限長解析 / 最適化理論 / 推定理論 / 情報セキュリティ / 統計科学 / データサイエンス |
Outline of Final Research Achievements |
In this research, we derived theoretical limits of performance of communication systems under practical conditions, such as when the codeword length is finite, and constructed a set of coding and decoding algorithm that achieve these theoretical limits. Theoretical limits such as code rate and error probability are precisely analyzed for practical communication channels, and in parallel, the entire coding and decoding system is formulated as a broad optimization problem to derive an optimal set of coding and decoding algorithm under more practical constraints. The results of theoretical limits in the practical condition were used as a heuristic function for optimization in the configuration of the coding and decoding system, and synergistic research such as validating global optimality and reduction of computational complexity in the coding and decoding algorithms was able to be promoted.
|
Free Research Field |
情報理論
|
Academic Significance and Societal Importance of the Research Achievements |
情報理論・符号理論は,情報を扱う科学及び工学の基礎理論として現代の情報化社会の発展に寄与してきた.情報理論・符号理論では,雑音のある通信路を通して情報を効率よくかつ誤りなしで送る符号化・復号法の問題を数理的に扱う研究が行われている.我々は,この問題に対するアプローチをさらに推し進め,符号長が有限の場合など実用に則した条件下の通信システムの性能の理論限界を導出し,その理論限界を達成する符号化・復号法の組を構成した.このように,本研究の成果は実用上で信頼性が高く高効率な通信や情報処理システムの設計や構築に寄与することが見込まれる.
|