• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

In-situ observation technique of Schottky barriers around interface between metallic electrode and semiconductor

Research Project

  • PDF
Project/Area Number 17K06782
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Physical properties of metals/Metal-base materials
Research InstitutionJapan Fine Ceramics Center

Principal Investigator

KATO Takeharu  一般財団法人ファインセラミックスセンター, その他部局等, 主任研究員 (90399600)

Co-Investigator(Kenkyū-buntansha) 横江 大作  一般財団法人ファインセラミックスセンター, その他部局等, 技師 (20590079)
吉田 竜視  一般財団法人ファインセラミックスセンター, その他部局等, 技師 (50595725)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywordsショットキー障壁 / 金属/半導体界面 / 電子線ホログラフィー / 電位分布
Outline of Final Research Achievements

We fabricated TEM specimen supports, which could apply voltage to a TEM specimen without leak current, to observe Schottky barriers around interfaces between metallic electrodes and semiconductors. TEM specimen with the interface between metallic electrode and semiconductor was fixed on the support. The TEM specimen was thinned with uniform thickness and no damage, in which current-voltage character could be measured applying the forward bias or reversed bias to the interfaces. In addition, crystal orientations of the metallic electrode and semiconductors were identified using electron back scattering diffraction. The relationships between the applying voltages and the thickness of depletion layers in the semiconductor at the vicinity of the metallic electrode interface could be characterized using electron holography, which could reveal the potential distribution in the semiconductor during applying voltage to the interface.

Free Research Field

材料工学

Academic Significance and Societal Importance of the Research Achievements

将来のパワーデバイス分野で必要とされる炭化ケイ素(SiC)や窒化ガリウム(GaN)素子の電極開発に役立つ技術である。これらの材料は現状のシリコン(Si)半導体素子と比較し低抵抗特性と耐電圧特性を有しており、エレクトロニクス製品の作動時に発生するエネルギーロス減らし、消費電力の削減に大きく貢献することが見込まれ、省エネ化に必要な素子である。パワーデバイス素子は、家電、コンピューター、自動車(電気自動車を含む)、大型の鉄道設備や、携帯電話・スマートフォン、携帯電話基地局の高周波増幅器等に広く使われており、現代人の生活基盤を支えている。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi