• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Elucidation of Mechanisms of Hydrogen Co-deposition and Hydrogen-Induced Phenomena in Electrochemical Deposition

Research Project

  • PDF
Project/Area Number 17K06864
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Material processing/Microstructural control engineering
Research InstitutionUniversity of Hyogo

Principal Investigator

Naoki Fukumuro  兵庫県立大学, 工学研究科, 准教授 (10347528)

Co-Investigator(Kenkyū-buntansha) 八重 真治  兵庫県立大学, 工学研究科, 教授 (00239716)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywordsめっき / 水素 / 空孔 / 金属原子拡散 / 水素脆化 / 水素化物 / 昇温脱離スペクトル / 電子顕微鏡
Outline of Final Research Achievements

In this study, the mechanisms of hydrogen co-deposition and hydrogen-induced phenomena in electro and electroless deposited metal films were investigated using thermal desorption spectroscopy, X-ray diffraction, and transmission electron microscopy. In the electrodeposited Pt and Pd films with high hydrogen concentrations, hydrogen-induced superabundant vacancies were formed and the enhancement of metal atom diffusion such as low-temperature grain growth was observed. A large amount of co-deposited hydrogen in the electroless Ni-P/Au films improved the wettability of lead-free solders for electronic packaging. We succeeded in the electrochemical synthesis of superstoichiometric hydride PdHx (1 < x ≦ 2) and analyzed its crystal structure. These results are extremely significant in the study of metal-hydrogen system and are expected to be used in various applications.

Free Research Field

めっき膜および金属中に侵入した水素の存在状態分析と透過電子顕微鏡による構造解析

Academic Significance and Societal Importance of the Research Achievements

本研究では、PtおよびPd電析膜について水素共析によって生成した超多量空孔が、格子収縮や低温粒成長等の顕著な水素誘起現象を引き起こすことを明らかにした。また、電解チャージと無電解めっきによってこれまで得られていない超化学量論的水素化物PdHx(1 < x ≦2)の合成に成功した。これらは金属-水素系の研究において非常に重要な成果であり、学術的意義が大きい。電子部品の基板実装において、無電解Ni-P/Auめっき膜中の水素がはんだ濡れ性の向上に寄与することを見出し、企業からのめっき膜中の水素の分析依頼と技術相談に応じ、水素の問題の解決に貢献したことは社会的意義が大きい。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi