• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Spatial distribution of readily releasable vesicles underlying short-term plasticity at synapses

Research Project

  • PDF
Project/Area Number 17K07064
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Neurophysiology / General neuroscience
Research InstitutionJikei University School of Medicine

Principal Investigator

Nakamura Yukihiro  東京慈恵会医科大学, 医学部, 講師 (40460696)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywordsシナプス伝達 / シナプス前終末 / カルシウムチャネル / シナプス小胞 / 短期可塑性 / カルシウムキレート剤
Outline of Final Research Achievements

The coupling between presynaptic voltage-gated Ca channels (VGCCs) and synaptic vesicles (SVs) critically determine the probability and timing of neurotransmitter release. However, the distribution of SVs within active zones is poorly understood. Using patch-clamp experiments assessing the inhibitory effect of Ca chelator EGTA on vesicular release and reaction diffusion simulations of Ca2+ followed by SV release, we demonstrated at the calyx of Held synapse in the auditory brainstem that ~70% of readily-releasable pool SV is docked within 50 nm from a cluster of VGCCs and that SVs around 20 nm are exocytosed in response to action potentials. The distribution of SVs was maintained during repetitive stimulation, suggesting that the SV replenishment is primarily responsible for short-term plasticity of the synapse. Furthermore, this simulation points out that EGTA can inhibit SV release in the nanodomain of single VGCCs, pressing for a revision of the interpretation of past experiments.

Free Research Field

神経生理学

Academic Significance and Societal Importance of the Research Achievements

電位依存性Caチャネルと即時放出可能シナプス小胞の局所配置は神経伝達物質放出の確率やタイミングを制御する。中枢神経シナプス前終末では数十個のCaチャネルがクラスター状に存在することが知られていたが、本研究が明らかにした即時放出可能小胞の分布は、これを相補する分子の局所配置に関する重要な知見である。短期可塑性で小胞の分布に変化が生じないことは、小胞の補充こそが短期可塑性を担う本質的な機構であることを示唆するものであり、今後の可塑性研究の展開が待たれる。またEGTAによるナノドメインCaの抑制を示したシミュレーションは、通説に一石を投じ過去の実験の解釈の見直しを迫るものである。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi