• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Development of Bayesian Estimation Method based on Information Geometry for Multi-layered Omics Data Integration

Research Project

  • PDF
Project/Area Number 17K07254
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Medical genome science
Research InstitutionKyoto University

Principal Investigator

Yamada Ryo  京都大学, 医学研究科, 教授 (50301106)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywordsオミックス / 解析手法 / ベイズ / MCMC / ゲノム
Outline of Final Research Achievements

Initially we surveyed the appropriate targets of Bayesian integration of multiple omics layers and developed a method and did a poster presentation. Unfortunately a study in the similar frame was published by overseas competitors. Upon this, we re-directed our study targets of MCMC Bayesian approach to the phenotypes that are difficult to handle, 3-dimensional shape and 3-dimensional movement, and successfully developed a method to extract meaningful features from them so that those phenotypes can be readily integrated with single cell omics data set. The finding was proposed in a domestic meeting.

Free Research Field

オミックス統計解析

Academic Significance and Societal Importance of the Research Achievements

海外他研究者による先行発表により、当初計画を変更して取り組むことを余儀なくされたが、オミックスデータの定義を拡張し、特に、統計解析の枠組みに乗りにくい表現型である、形態学的情報と3次元移動・軌跡情報とを標的として、MCMCベイズ手法の開発に成功した。このようにして抽出した1細胞の形・動きの特徴量は、いわゆる1細胞情報(とさらに統合するのが容易な状態になっている。その基本的手法の枠組みを維持しつつ、標的に軌道修正を加えることにより、かえって、オミックス研究領域における解析の難しい表現型の解析基盤を整えることに寄与することとなり、有意義なものとなった。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi