• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Development of gene-function prediction models with highly predictive and sustainable construction by integrated network analysis

Research Project

  • PDF
Project/Area Number 17K07663
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Horticultural science
Research InstitutionInstitute of Physical and Chemical Research

Principal Investigator

Fukushima Atsushi  国立研究開発法人理化学研究所, 環境資源科学研究センター, 研究員 (80415281)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywordsバイオインフォマティクス / 園芸ゲノム科学
Outline of Final Research Achievements

This study tried to integrate existing knowledge related to gene functions and correlation-based biomolecular networks using different types of omics data for deeper understanding a genotype-environment interaction in physiological events of plants. The results include (i) advanced development of gene-function prediction methods with high predictive accuracy by integrating omics data and (ii) evaluation of correlation networks constructed by Pearson correlation coefficient and information-theoretic inference methods. We developed the method to quantify and predict gene-gene functional links. By using the developed method, we performed differential regulation analysis (DRA) to predict candidate regulators based on differential co-expression data.

Free Research Field

植物システム生物学

Academic Significance and Societal Importance of the Research Achievements

断続的に産出されるオミックスデータに対応し、遺伝子機能予測モデルの構築を“持続的に”行うことができる統計モデルは、利用可能なオミックスデータが増えるに従って、予測精度の改善が見込まれる。このため、持続的にその構築を行うソフトウェア実装が重要となる。植物の持つ環境応答の頑健さと柔軟さとを理解するため、生理機能の背後にある遺伝子ネットワークの特性解明に大きく寄与する。本研究課題の遺伝子機能予測モデルおよび解析手法は、将来的に総合的な「環境適応型植物設計システム」の重要なモジュールの一つとなりうる(新技術の創製)。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi