2021 Fiscal Year Final Research Report
Computational Models in Cryptography for Encrypted Computation
Project/Area Number |
17K12640
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Theory of informatics
|
Research Institution | Mie University (2019-2021) Osaka University (2017-2018) |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2022-03-31
|
Keywords | 秘匿計算 / コミットメントスキーム / 耐量子計算機暗号 |
Outline of Final Research Achievements |
This study analyzed a computational model with high affinity to cryptographic techniques with inherent computational processes and applied it to develop efficient and highly functional cryptographic protocols. Our results include error analysis techniques for public-key encryption schemes in a computational model in which artificial noise is added to the matrix-vector product, confidentiality computation in which the algebraic properties of public-key cryptography are exploited to protect the privacy of the participant’s data, and a commitment scheme, an electronic envelope, based on the model, and showed its wide range of applications. Furthermore, we developed a technique for analyzing the computational resources of a highly efficient secure computation protocol that achieves a higher level of security and communicates only once.
|
Free Research Field |
暗号理論,計算量理論
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で主に用いたモデルは人為ノイズを加えられた行列ベクトル積という従来の暗号理論で広く用いられてきた整数論に基づくものと異なる数学的構造を持っている.この構造は今後暗号プロトコルの脅威となる量子計算機の攻撃に対する耐性を持ちながら単純で高速な計算が期待できる特徴を持っており,量子計算機の脅威が顕在化する将来の情報通信における安全な情報セキュリティ技術の確立に資する成果であると言える.
|